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THE MATHEMATICS STUDENT -

Volume XIII] MARCH 1945 [No. 1

GENERAL ALGEBRA
BY

V. S. KRISHNAN, Research Student, Mudras Universit

1. General Algebra and Modern Algebra.

Algebra started with the study of numbers, and number-based
systems, like rational numbers, real numbers, polynomiale, matrices,
and functions of real variables. When, in the later part of the
Ninteenth Century, Mathematicians began to- consider the abstract
axiomatic approach to the different branches of the subject, a study
of the formal properties of the structural patterns given by these
number based systems was initiated. This was the beginning of the
theory now known as ‘Modern Algebra’.

These structures can all be reduced to depend on one of the three
fundamental structures, the group, the ring and the field. A group is
defined to be an abstract set (, closed! for a binary, associative
operation, +, relative to which there is an identity element O - satis-
fying O+x=2+0=ux, for every « in G, and an inverse -ux, to each
element .r in G satisfying (-@)+x=2r+(~-1)=0. When the group-
operation, +, is also commutative, the group is called an * Abelian
Group’ (and also a ‘ Mudule’ if, as here, the operation is denoted by +).
‘A ring is defined to be a module, R, closed for a second binary, as-
sociative operation, ¢, which is distributed by + [so that, for any
x4, 2 from R, a{ytzi=ay+a-z and (y+z)x=ya+za]. When »
is also commutative the ring is ‘commutative’. Finally a field is a
double group, being defined as a ring, ¥, in which the set of elements
other than O, form a group with ¢ as group operation, with an
identity element, 1, and an inverse 27! to each element z, {x#0). If,
ag a ring, F is commutative, it is a commutative field. Otherwise it
is a skew field.

1. A set K is closed for a binary operation + if with each pair of elements (x, y)
of K is associateda unique element, (x+y), of K. The_operation + is associative if
2+(y+35)=(v+y) +s, for all 1, y and 5 ; it is commutative if x+y=y+x, for all 1, y.



e

V, S, KRISHNAN

.Since all the structures. of ‘ Modern Algebra’ are special cases
of the above three, and each of these is a group for at least one
operation, we may designate the structures of Modern Algebra
generally as ' the group-based structures . :

* The only logical concept, besides that of the ‘ number ', which is
fundamental for the developement of Mathematics is the * set-concept "
In ‘set theory ' one meets with a different class of structures for
which the fundamental operations are those of set-union, get-inter-
section, and set-complementation. These set-algebras are not group-
based structures. For neither of the basic binary operations U or
A—of set-union and set-intersection—can be a group-operation for a
family, F, of sets. If U is to -be a group operation for F, there
must be a unique solution in F for the equation AUX =B whatever
sots A,B be chosen from F. But unless A is the null set and B a one-
element set, the equation has either no solutions or more than one
solution (according as ACB.is untrue or true). In tha same way N
cannot be a group-operation. To obtain a formal characterisation .of
these set-algebras, we take note of a remarkable feature of the set-
operations, namely that they can all be defined solely in terms of a
fundamental - binary, (or two term), relation—the °‘sef inclusion’
relation, ‘C . Thus the union of a family of sets Cyis characterised
as that set C for which: each Cr CC and, whenever each C/C some”
set D, then CCD. The formal properties of this relation ‘C’ —namely
that ACA for every A, ACB and BCC imply ACC, and ACB, BCA
imply A=B—are embodied in the definition of ‘an ordering relation’
< on an abstract set K, as a reflexive, transitive relation—connecting
cortain pairs of K— such that +<<y and y<<X imply &=y, for all wy
from K. A set K, with such an ordering relation associated with if,
is a ‘partially ordered set’. * In such a (partially) ordered set
‘order operations’ (similar to the operations of set-algebra) can be
defined in terms-of the ordering relation. And ordered sets which
are closed for selections of these operations are of special interest,
and have special properties. All these structures we shall designate
by the term ‘order-based structures’; they are also sometimes called
*lattice structures’. As important examples of these, we may consi-
der the additive'éystem, the multiplicative system and the lattice.
Given two elements x,y of an ordered set K, the sum (z +y), and
product, (x-y). of these are defined to be elements which satisfy
the conditions: z<{r+y), w<(z+y), and if a<z y<z fora

udy of partially. ordered sets reference may be made to H. M.

Partially Ordered Sets’, Trans. Arn. Math. Soc., Vol 42.
vy %
£
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z of K, then (z+9)<z; a-y<a, 2-y<y, and if z<a, 2<y for a z of
K, then z<(a:y). Such a sum or product is unique if it exists. An
additive systém is an ordered set closed for finite additions—i.e., one
containing the sum for every pair of olements.: A multiplicative
system contains the product for every pair of its élements, While a
lattice contains both the sum and the product of every two of its
elements. Ohviously, the family E of all subsets of a set, including
the nullset as a subset, forms such a lattice, with set inclusion as
the ordering relation; A\UB and ANB form the sum and the product
of the two subsets A, B of E.

The group—, and order— based structures are, in .a sense, comple-
mentary types of structures; the only known structures belonging
to hoth these types are the number systems, and the Boolean rings
defined and studied by M. H. Stone’ 1In order to he able to
include structures belonging to both these _types under a single
theory we shall designate by °‘General Algebra’, the study of all
structural patterns, in a formal manner. The most important
structures of ‘General Algebra’ can then he classified broadly into
‘the group based structures’-and ‘the order hased structures .

2. The Method in General Algebra 5

In order to analyse and study the characteristic features of the
abstract structures occurring in General Algebra, the method adopted
is to compare structures of the same nature, This comparison is
effected by considering the ‘/lomomorphisms' between two similar
structures : where by a ‘ homomorphism-, (or homomorphic map), of one
structure % on a similar structure &' we mean a map, f, of k on k' -
[which maps each element x of & on a unique element 7 (x) of &', in
such a way that each 2" of /’ is the map of at least one a of %] which
carries over all—or a selection of—the structural features of A—on to
corresponding structural features of &’. [Thus f carries an operation.
6 on *k on to the corresponding operation 6 on &’ if f[6(c)]=6'{ F(c)},
for any subset ¢ of &' provided 6{(c) exists; and f carries a relation
R on k onto a corresponding relation R’ on &’ if 2Ry in % “implies
F(a)Rf'(y). The homomorphism f is said to be relative to 0, or R, if it
carries 6, or R, of X into a corresponding 6" or R/, of k'}.

Any such homomorphic map f, of & on another similar structure
I, determines an equivalence re‘;ation i.e., a reflexive, symmetric and

s Cf. his paper on ‘ The theory of Representations for Boolean Algehras, Trans.
Am. Math. Soc, Vol. 40.
¢ An operation 6 on a set % is a method of associating, to certam subsets of k, smgle
elements of %; the element associated thus with a subset ¢ is denoted by 8(e) -
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transitive relation E=E(f), on &; namely the relation E defined by
the condition: 2By, for x, y of &, if and only if f(x)=Ff(y). [Since
f@=F(x), F(x)=F(y) implies f(y)=rf(x) and f(2)=F(y), fQ)=F(2)
imply f(x)=f(z2), for all 2, y, z from %, the relation E is reflexive,
symmetric and transitive.] The relation E, =E(f), is an equivalence
relation for any map f of & on %’. The extra condition that f is a homo-
morphic map usually imposes further conditions on the associated
equivalence E(f); so we shall call these equivalences corresponding
to homomorphic maps of & on other similar structures ‘the homomor-
phic equivalences’, (or homomorphic equivalence relations). The charac-
terisation of these among all equivalences can be undertaken if we
know the nature of the structures /, ' and the nature of the struc-
tural features relative to which the homomorphisms are considered.
Without knowing these, however, we can state one general result.
Tt is:

2:1. if 6, 6’,are corresponding operations defined on two similar
structures , &’ respectively, and if a homomorphic map, f, of & on
L’ carries 6 into 6’, the corresponding equivalence E(f) on / is a
congruence relative lo 8 ; where, by a congruence relative to 6, we mean
an equivalence relation E on - satisfying the condition: when (eidi)
is a family of pairs of elements of i each of which satisfies ci E di,
[6{c:})E[0{di}] also holds, provided 8(c:) and 6(d:) exist in k.

This result is easily proved; for if 8{c:}, 8{d:} exist in X, 6'{ f ()}’
'{ f(d:)} exist in %', being equal, respectively, to f{8{ci}] and 7[6{di}].
And ¢ E d; for each (ci, di) implies f{c:)=f(di) for each (ci, @), and so
0'{7(ci)} must be equal to 8'{f(d)}. Hence also 7FI8{cii]=rI[8:di}]
or [6{ci}] E [8{d:}] follows.

But the converse is not generally true. There may exist con-
gruences relative to 8 which do not equal the homomorphic equiva-
lence defined by any homomorphism relative to 6.

]

The theory of congruences and homomorphisms takes different
paths for ‘the group—,and the order—based structures. It is the
purpose of this paper to compare and contrast the salient features
of the theory as it affects structures belonging to these two types.
We shall hegin by considering the group-based structures first.

3. Homomorphisms and Congruences for the group-based struc-
tures.

For the group-based structures the theory of congruences and
homomorphisms depends ultimately on that for the groups. The
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group being defined in terms of a single operation, +, the homo-
morphisms are those relative to this operation. The two main
results regarding group-congruences and homomorphisms are:

3-1. the homomorphic equivalences on a group G coincide with
the congruences on G relative to the group operation, + ;

3:2. every congruence, E, on G relative to this group operation
+, is completely determined by a single class of mutually congruent
elements of G; namely, by the ‘normal subgroup’ of elements of G
congruent to the identity element, O.

By the general result (2-1)'we have only to show that every
congruence K, on G relative to + is a homomorphic equivalence, to
prove the result (3-1). Now given E, if we define ‘the coset E(x)
relative to E, containing a as the set of elements y of G for
which zEy is true, it is seen that xe E(z), E(x)=E(y) if, and
only if, # By is true and if E(x)#E(y), E(x) and E(y) are dis-
joint. Now these cosets combine by the elementwise operation
+, as BE(a+y)=E(2’+y) if B2)=E(z’) and E(y)=E()-or, if Rz’
and yEy' are true [this follows, since E is a congruence relative
to +]. So the coset B(x+y), which depends only on E(x) and E(y)
and mot on z or y, may be demoted by E(x) ¥ E(y). Then this
operation ¥ on the family G of the distinct cosets of G relative
to B, is seen to be associative, [and commutative], since + is such.
And it is a group operation on G, since E(z) ¥ E(o)=E(0) F E(a)
=E(z) and E(-2) F E(x)=E(z) T B(-2)=E(0). And the map, g, of
G on G defined by putting ¢ (x)=E(z), for each z in &, is ‘a homo-
morphism from G to G, which is such that the homomorphic equi-
valence E(g) it defines on G is the same as the congruence E that
we started with, [for g(x)=g(y) or B(x)=E(y) if, and only if, 2Ey is
true]. So this completes the proof of (3-1).

To prove (3-2), let E be, as before, any congruence on G relative
to +. Then the coset E (O) is a ‘subgroup’ of G -i.e., contains z+y
with @y and (-x) with x, [since OEx, OBy imply (0+0) E (z+y) or
OE(xz+y): and 'OEz implies [0+ ( - 2)|E[z+(~2)] or (-z) EO which
implies OE(-2)], This ‘subgroup’ is also ‘normal’ -i.e., contains
with 2 also -t +ax +¢ whatever t be from G, [since OEz implies
(=t+0+¢) E (~t+z+t¢) or OE (-t+x+¢t)l. The congruence E is
completely defined by E(o) since aEy is true if, and only if,
[r+(-2)] E [y+(-2)] or OE(y~-2) or (y-z)eE(0) holds. It can also
be verified that given any normal subgroup N of G a congruence, E
relative to + is determined if we write 2Ey when, and only when,
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(y-x)eN. We call E the congruence modulo N and write =y (mod. N)
for ¥Ey. For this congruence E, E(0O) is evidently= N. So for a group
the horhomorphic equivalences, the congruences relative to +, and
the congruences modulo normal subgroups are all coincident.

For a ring it can be readily verified that the subgroup E(O) cor-
responding to any congruence E rglative to + and e, is a two-sided
ideal® ie., a subgroup containing with z also a-2 and z-a, for all z
from the ring, [for 220=0-2=0, for all z]. And the congruence E is
that modulo this ideal, considered as a subgroup. Conversely also, the
congruence modulo a subgroup, N, is also a congruence for s, (he-
sides being one for +), if the subgroup is a two sided ideal, [as
x=a’ (mod N), y=y' (mod N) or (' - 2)eN, (4 ~y)eN imply a'-(y - ),
(2" ~z)y and 2’y =2 - y=2" (v =y)+ (2 ~2)y are in N, or r-y=za'-y
(mod. N)]. Hence for a ring the homomorphic equivalences, congru-
ences relative to +, +, and congruences modulo two sided-ideals get
identified.

For a field there are only two homomorphic equivalences or con-
gruences, since there are only two distinct two sided ideals, namely,
the whole field, and the one element set (O).

4. Homomorphisms and congruences for order-based structures.

Since for order based structures, there is a fundamental ordering
relation, we have to define a homomorphism between two such struc-
tures to be, in the first place, relative to the ordering relation, It
may also be relative to certain of the order operations. Since the
homomorphisms have to carry over the ordering relation, the charac-
terisation of the homomorphic equivalences for order based structures
becomes somewhat complicated. But such a difficulty does not pre-
sent itself when dealing with the three structures we defined earlier,
namely the additive system, the multiplicative system and the lattice,
We shall confine our attention to these only, and even here omit the
treatment of multiplicative systems, since they behave exactly simi-
lar, and dual, to the additive systems.®

The simplicity in treatment for these structures arises from the
fact that these can be characterised in terms of their basic opera-
tions only, without making use of a fundamental ordering relation.
For instance an additive -system can be characterised as an abstract ]

. ? This subgroup should be normal also, by our earlier remarks. But for a ring, as
it isan Abetian group for + , all subgroups are normal,
ST havg conside.red in detail these homomorphisms and congruences for order based
structures in a thesis recently accepted for the M.Sc. Degree by the Madras University.
For a more detailed study, vide *the theery of Homomorphisms and Congruences
for Partially Ordered sets’.in the Proc. Ind. Acad. Sci. Vol. 21, No. 6.
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set & closed for a binary operation + which is commutative associa-
tive and (uutological (i.e., satisfies x+x=a for all-x), while a lattice
can be characterised as a set closed for two such operations +,. ¢
which are mutually related by the condition x+y=y if, and only if,
x-y=x. For these conditions are true of + in an additive system and
of + and ¢ in-a lattice. While when a set / is closed for such an
operation, (or pair of operations), an ordering relation ‘<’ can be
defined for & by saying <y if, and only of, z+y=y, {and also
zry=ux, for a lattice]l. Under this ordering relation, it can be imme-
diately verified that x +y, (z-y) denotes the sum, (product), in k.of x
and y, and so & is an additive system, (or lattice).

-Also this connection of < to + ensures that any homomorphism,
/, from one additive system, %, (or lattice), to another, k', relative to
+, (+and ¢ ), is also relative to 1the ordering relation <, since x<ly
in & implies x+y=y and so flx)+f(y)=Hr+y)=HAy) or A2)<Ay)in k.
So we can now omit altogether the statement that the homomorphisms
are relative to the ordering relation, and need only consider those
relative to the basic operations, as for groups or rings.

We are now able to assert a result similar 1o (3-1) for these
systems.—i.e., the homomorphic equivalences identity with the
congruences. One part is proved by using (2-1), while the other,
that every congruence E is a homomorphic. equivalence, is proved as
in the case of the group (in proving (3-1) ). Thus, for an.additive
system, the cosets E(r) are shown to combine by the element wise
operations +, and so the family k of these cosets  is closed‘fm; a
binary operation ¥, which is commutative, associative and tauto-
logical, since + is such. Hence / is an additive system, and there
is homomorphism from % to k,— mapping each x of & on E(x) of £,
which ‘defines on & the homomorphic equivalence E. So the congru-
ence E relative to + is a homomorphic equivalence. A similar proof
can be constructed for the lattice. B

But the analogue of result (3-2) is not true for the congruences
on additive systems or lattices. All congruences cannot be defined in
terms of a single coset, (or a finite selection of cosets) of mutually
congruent elements. But there are certain special congruences-which
I call ‘regular congruences'—which are so determined. These "we
now proceed to consider. [As before, we omit the regular multiplica-
tive congruences on multiplicative systems, which are the duals of
the regular additive congruences we treat of here.]
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Let . be an additive system with a zero, O—i.e., an element
which is < every element of &. Then if E is any additive congru-
ence on k [i.e., a congruence relative to +], the coset E (o) is a
u - tdeal—i.e., a subset containing x+y, with x and y, and every 2<x,
with z. [For oEr and oBEy imply oE(x+y):. while oBx and z<x
imply (0+2) E(x+2) or zEr; so 2Ez oEx and oEz follow, as E is
transitive.]

Now a congruence—relative to +-— can be defined modulo any
u- ideal C of k by saying that two elements x,y of A are congruent,
a=y (mod. C), when and only when x+¢=y+1, for some ¢ of C. [Itis a
congruence relative to + ; for, whatever elements x.,2, x’,y’, be taken
from k, if ¢, and so t'=¢+¢, are inC, then a+i=x+t; c+i=y+1
implies y+i=ux+t; x+i=y+t, and y+{'=z+¢ imply x+t'=y+1’
=z+¢t';and v+t=y+fand '+ U=y +¢ imply (x+a’)+ t'=(y+y)+¢".]

Starting from a congruence E on & (relative to +), if C=E(0),
in general E is not identical with the congruence modulo C. When
it is, we say E is a ‘regular additive cangruence’. In general we
can say that x=y (mod C) implies «Ey, [since r+t=y+¢ and tEo
imply (¢t+t)E(z+0), (v+0)E(y+t) and (y+t)E(y+o) or zaElx+1),
(:+#)E(y+t) and (y+1)Ey. Hence 2By follows as E is transitive.]
Thus for a regular congruence E, the converse, that xEy implies
x=y (mod C), where C=E(0), must be true. By its very definition,
a regular additive congruence is the congruence modulo a p- ideal.
The converse is also true. The congruence modulo any p- ideal C of
J: is ‘regular additive’, [since for this congruence E(0o)=C itself, as
=0 (mod C) if, and only if, for same ¢ in C, x+t=0+¢ or a+t=t
or x<{, which implies, and is implied by, .¢C].

For a lattice, L, with O and, 1- where O< every element of
L<1- certain ‘'regular lattice congruences’ can be similarly defined
which depend only on the cosets E(o), E(1) consisting of elements
congruent to O and 1 respectively. [As before E(o) is a u- ideal;
E(l) is an a- ideal - i.e, a subset containing a-y, with x, y, and
all z of L>ur, with @] 7

But the point to be noted is that all’” congruences are not
‘ regular ' for these structures. There are certain contrasting types—
like ‘the irreducible’, additive, (or lattice), congruences for which
E(0) contains only the element O, {(and E(1) contains  only 1)
Evidently if a congruence E is regular and irreducible, E(z)=/(z)
for all z. Corresponding to these, we have ‘ regular ' and ‘irreducible '
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homomorphisms for which the homomorphic equivalence defined by
them is a ‘regular’ or ‘irreducible’ congruence.”

We shall conclude with a few examples of these types of con-
gruences. We consider a sub-lattice M of the lattice L — of all
subsets of the set (a, b, ¢, d, e)—these subsets being partially ordered
by the set inclusion relation. The sub-lattice M consists of the
subsets : (a,b,¢,d,e), (wbe,d), (¢be), (be,d), (b,c), (b) and the null set, O.
The congruences are denoted by the corresponding partition of the
lattice M into the cosets of mutually congruent elements;® thus:

Er: [0, (0), (0,0), (abye) ] [(bieyed), (abye,d) ] [abeydie)
By: [O1 [0), (0e)] [{abdye), (ye,d), (abye,d), (abe,die)
Es: [0,(0), 0a)] [(adie), ed), (abed), (ubede)
Ey: [0, 0), (be), (ade)] [(be,d), (abe,d), (abed.e)]
E;:

5

Ei: [0,(0) ], [ (D), (abie), (byeyd), (abye,d) ), [(ade,de)]

E,, E;, E; are examples of additive congruences of which E,; is
regular, E, is irreducible and E; is neither regular nor irreducible.
Only E; is also a lattice congruence.

]
1

By, E;, B; are lattice congruences of which E; is regular, E; is
irreducible and Eg is neither regular nor irreducible; E, is not a
regular additive congruence; neither is E; while E; is, necessarily,
also an irreducible additive congruence.

Before concluding, I wish to express my sincere gratitude to
Dr. R. Vaidyanathaswamy, Head of the Mathematics Department
for his invaluable help in the preparation of this paper.

7 For a consideration of these types of congruences and homomorphisms in more
detail refer to my paper mentioned in footnote 6.

§ For example, besides connecting each element of M with itself E; relates only
(a, b, ¢,) with (b, ¢,) and (a, b, ¢, d,) with (b, ¢, d,).

GLEANING

“ Mathematics, like all the other sciences, opens its doors to those only
who knock long and hard. No more damaging evidence can be adducedto
prove the weakness of character than for one to have aversion to mathematics.
For whether one wishes so or not, it is nevertheless true ; that to have aver-
sion for mathematics means to have aversion to accurate, painstaking, and
persistent hard study, and to have aversion to hard study is to fail to secure
a liberal education and thus fail to compete in that fierce and vigorous
struggle for the highest and the truest and the best in life which only the

strong can hope to secure.”
B. F. FINKEL

2

X

d
<
(0] 10) (), (051 (D) (bt ] Latetn) ] S



ON THE ARITHMETIC AND THE GEOMETRIC
MEANS FROM A TYPE 1II POPULATION
BY
S. JANARDANA AIYER, Department of Slulistics, Travancore University.
1. One of the most popular alternatives to the normal

distribution is the Gamma-Function distribution, commonly referred
to as the Type III curves in the Pearsonian system and given by

PX)=nd X7F "X (). (0<X)
The object of the present paper is to study in detail a few

properties of the arithmetic and the geometric means from this
population.

Let X and ¢ be the arithmetic and the geometric means respec-
tively in the sample, X;, Xy, . . ... . .. Xn.

The characteristic function of X and g is

b (b t)=E [e"’l x. g‘“]
w'?

= il -1 et (X +Xw)
FT;»)I jel (X X ! dXy - dXo.

=I‘7:L’(‘; [& p+ -1 —X(» )(IX]

v

I‘”(])+ f—’)

™(p)- 'mt"(l - ”—I)WH’

mn

(n

The simultaneous sampling distribution of X and g, Py, X),
therefore is

1. \"‘ . i“‘ e—itli,(/—l-;—l I‘”(p+ )
diy- e &

ICERE J —ioo nl (1 - gfn)"ﬂt .

X - maX (= X\ 12 1 ta
o e LT oy (0t )
@X)-T"(p) 27 ) e
(mnx)"‘o ”"_'_}? % (I
e W o @)
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joo + =
_ nX\: (p
where I i S—i ( ) np+t3) dty . (3)

The integral I cannot be evaluated in finite terms of elementary
functions. A solution however exists as an infinite series which
may be obtained either by the method of differential equations or of
complex integration. The results established, herein, are hased upon
the values of p (g, X) and ¢ (#, ;) given by the relations (2) and (1)
respectively.

2. Approximation for P (g, X)

Let the size of the sample », he so large that terms of the order
of (1/n%) may be neglected in comparison with terms of lower orders.
From (3)

» b
1 (= nX I’ (p+ ;f)
I= 37 - dby

" Tp+h)

it
= .1. - (,’@ i F__..__.(p T d/
Cem \__\yg T(np +it) ~

S‘x’ /f log ( j()+'n log I <p+ 4)—log T(np +it)dt

-

Els

The exponential factor within the integral, ’a,fter expansion in
descending powers of n gives,

I= I (p)rmp)~ 2.0~ rznp ™
, '\/271

N _1_S°° [ 77Xp i Y 1 ]
erp. Y . ( Y (p)+log —* + np 1277'.1;,)9

4 (itP [ (p) _ 1 _ _L]
n 21 2p  4np?

(;If}ﬂ["'3<‘z> % +0( )lm (@)

where ¥ (p)=(d/dp) log T'(p)

Y (p)=(d/dp) [¢(p)], and so on,
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If n is so large that terms of order (1/2?), may be neglected,
then (4) gives,

I ~ 20
- ——+np np—% . )
. 12np T (p) - (np) x 0119—7 .
@y -
1 6% .
Tt — np—3
_ s 49 T (p) - (np) (5)
e )
n*Xp 1 6
where 6=1 (p) +log( p )+ o we ).
1
b= =g (p) = = see (7
and 3 [lb (» p] (7
From (2) and (5), therefore, we may write,
plgy )= (el - 0 g Kot R G [140()] g
2 (pdv) q
so that for large values of n,
P(g, %) (mn*p) " xznp X"/’_I
QF,[N (97)) J g
—mnX — np wXp L kN . 7
e TR [W”“g +W] [--].0

In problems of testing hypothesis, when a large sample is
available and if it may be assumed from a priori considerations that
the sample variates might have been drawn possibly from a Type III
population, then ‘the above -expression for P(g, X) is helpful in pres-
cribing probabiiity' levels for p and m for rejection or acceptance of
a hypothesis.

3. Properties of the characteristic function of X and g.

Though the form for P (¢, X) is highly complicated, it is possible
to study a large number of the properties of X and g with the help
of the characteristic function, @& (#, #,). It generates the moment
functions and renders easy the evaluation of quantities like the 8
coefficients, the correlation coefficient etc., which involve them.

@ (h, )=E (0ﬁ‘ X. .’/12)
= J.Je"" X. gl Plg-X)-dx - dyg.

. ih)* ih .
= po -+ (h) mnt (72]|) Havty + 0 + Lﬁ“ﬂj'(a +- - -+ad inf.

where Bty stands for the moment function given by
E(X7-g?)={{X7- g% - Plg-X)-dg-dX ... (10)
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Also from (1),

e

3 it
b (b )= g p) = il+('n7’+ia( =) . (1)
(71p+t;)(11p+t1+1) ih\? i ...
21 (%) e
(p+t)-- - -(pt+ta+i-1) (ily )
* J! (nm) ¥~ ad 10 ]

Equating .coefficients of like powers of fll, in (10) and gll), it is
seen that ‘

t
_(p+t)upti+l) - - - (ap+t+j-1) F"(p +77)
it ] mtiepd T*(p)
4. The B Coefficients for g.

If m stands for the ¢th moment of the geometric mean about
its central value,

(12)

Bi=m&my® + and By=m,m,® - .. (13)
But,
My = g2 ~ Hoo1 1
My = fog = 3t oo+ 240 J .o (14)
My = o4 = dbio.3 por + Optas 100 = Biten*

Also from (12),
r(p+!) . (15)

Bot=0d 1y

From (13), (14) and (15), B, and B; may be calcuiated, but they
are not simple and neat. However, when n is large such that terms
of orders (1/n?) and higher may be neglected, 8, and B, reduce to
simpler forms. Then

1 Ly
Mot = b e”,’»([’)+2”¢ ®
v v
and b= [e ! "2] '[0 ! '1_] . (16)
44 ) 3 () 20’ (p)
B=c¢ " +2¢ " +3¢ " -3 oan

If » is large enough so that terms of order (1/n) may be
neglected, then 3;=0, and B,=3., thereby agreeing with the central
limit theorem that the sampling distribution of ¢ when the size of
the sample is too large is approximately normal.
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5. The coefficient of correlation between g and X.

It has been proved that X and g calculated from a Type 111
population are not independently distributed. The coefficient of
correlation r between them may now be obtained. If as before m
stands for the corresponding central moment. then

s L _ My T Mot Mol
‘/7”0 3t Mag Vv (L‘ne"#o-l ) (a0 = t10°)

‘ ro(p o ) ,

= : (18)

" { r(p)-T(p +?’;) -r( '”;17 ) } 'l

When n is large, so that as before, terms of the order of (1/n%

may he neglected then,

1
—TvH e . (19
(np)* { i _1}7"

rooo

If »n is so large that terms of order (1'n) may also be neglected
then
N S . (20)
vVl (p)
6. The regression of X on g
%= [o X P(Sn) ax

j: %P (%, g)- IX.

)
i ()
(mnyr 1 \0 &,ixxnﬁﬂ P—mnX( ) A% di

TI™Mp)-g-Bly) " 2mi ) Tap+1)
. (applying 2.)
x
1 (?zp +1)-T(p + ) y 1)
()n/z) r(p)g- Plg) 2m - ’_-—(”E)_—

Now the characteriétic function of ¢ is
Bg) = L I (p +~)
m I‘"(p)
and therefore the distribution P(g) of gy is

1 1
" (p)g 2mi

n

(" iso
S (mag)™ F”(p + L), e (22)
_fm
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From (21) and (22) it may be easily seen that

< _ 1 1y .I/P’(y)]

% = ) [(np -5 . (23)
If now the value of P(¢) in series, viz.,

B n P -1 °§ (- 1)n+m +1 | d" (g

{ F(ll) P”(p) a2 T"(1+2) |z=»r

be substituted in (23) we obtain,

anl g (mJ)m]
i+ oy
4 3( 1) [d/n V1 +2) ]z =1

"es (_1)/1+11r+1[>{i" (mg)™ ]
o Az T+ 2) 2=

(24)

ig""‘

i WS

7
Even in the simple case when n=2, or n=3, this expression
for X; is by no means elementary.
7. The regression of g on X.

Unlike the regression of X on ¢ the regression of g on X is
linear. The regression of ¢ on X,

G- [TgPoix) dy.
_ = Plex)

Jo P(X)
-y j:) L-P(L)-dL.

~dy

where L=(¢.X).
The characteristic function of L,

B0 = (LY = j; LP(L)dL.

. t
T(up)t "(p + ’—‘) .
I (p)Tnp+1) -
so that s
G =4(1) X= rlr3) g e (25)
. » T (p) -
The same regression equation is obtained by fitting a polynomial
in X to Gx-, the constants being determined by the method of least
squares.

In this connection it is interesting to point out that even though
the distribution of g and X is definitely non-normal the same linear
regression equation for g on X is obtained by fitting a polynomial
equation, the constants being determined by the method of least
squares.



INDEFINITE INTEGRATION BY MEANS OF
RESIDUES
BY
E. H. NEVILLE

1. If f(2) is a single valued function that is real for real values
of z, the evaluation of the integral

j:cf( %) da

as a sum of residues by means of a semicircular contour is a process
which we are all taught. Why are we left to discover for ourselves
the far less obvious process for the evaluation of the integral of the
same function with an arbitrary positive real lower limit ¢?
The integrand by which the evaluation is effected
o c+z
(@) log =~

The contour, before the limit is taken, is a gsemicircular one, whose
base extends along the imaginary axis from iR to -iR and whose
central radius, along the positive half of the real axis, is slit from
¢ to R. Within the region bounded by this contour, the logarithm
is single valued, and its imaginary part may be taken to be between
— 7 and 7 with this convention, the logarithm is real for real values
of z between 0 and ¢, and the logarithms corresponding to conju-
gate values of z, themselves have conjugate values. The extreme
values of the imaginary part of the logarithm are attained on the
edges of the cut, and the sum of the integrals inwards along the
lower edge of the cut and outwards along the upper edge is

¢ - . R e Wi X
!Rf(xﬁ) {log % - }da'+ L Aa?) {Vlog i—f—: + i }dr,

that is, R
91 '{ f(aHd.

On the imaginary axis, the logarithm is imaginary and A -y%) by
hypothesis is real, and therefore the integral is real. It follows that
if the integral along the semicircle tends to zero as R—oo, and if
f(z%) has no poles on the imaginary axis, then
The value of '

s 2 ] .

L fla?)da
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is the sum of the real parts of the residues of the function
3 ctz .
A2 log' s
al those poles of f(2°) whose real parts are positive.

2. We consider first the adaptation of this result when the
poles of f(2%) are all simple, for if the residue of f(z*) at a simple
pole a is A, the residue there of f(z?) log {(c+2)/(c~2)} is '

A log {(¢c+a)(c-a).
(i) If the pole « is on the real axis between 0 and ¢, the
residue A4 is real, and the logarithm has its real value.

For example,

j“ dx 1 N cta
¢ P-a W Bo-a
without decomposition into partial fractions, the denominator 2a

arising simply as the value when z=a of the derivative of 2*-d”

(ii) If @ has the complex value « +id’, with ¢”>0, and if
the residue A is A’+7A", the conjugate point @, that is, «' -id’, also
is a pole, and the residue at ¢ is A’-7A". The logarithms of
(c+a)ilc-a), (c+a)(c-da) are conjugate numbers p'+iu”. By addition,
ocgi— lal?+2ca’
°l+ |al®- 2

, (et alc+a)
w=1 log (c=a)c-a) ~

lo

1ehm

9

= arg tanh Wﬁt’rﬂ;
and p’ is the angle, between 0 and =, from the radius joining « to =
to the radius joining -c¢ to «; hence 7~ " is the angle at « in the
triangle whose vertices are « and*c¢, and since the area of this

triangle is ca’,
ded” 2ca’

T letaPtie-ali-4 T & - et

tan p'=

Thus the sum of the residues of f(2*) log{(c+2) (c-2); at « and 4,

which fs 2 A'w' -2A"", is explicitly

2ca j 2ca” -
9A’ arg h ———— ~2A" arc tan ———
A’ arg tan F]ar 2 Folap’

with the inverse tangent between 0 and .

For example, the function 1 (z¢+1) has only one pole in the first
quadrant, and if this pole is a, the residue there is 1/4a® that is
—af4; since a=(1+1i)v/2, wé have

/2 ro dn_ arc tan Ei*\_/—i - ‘arg tanh V2

vl

c at+l

3
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I f(2?)=(2+1)/(z* - 22° cos 9z +1), with 0<a<}m, the only rele
vant pole is.cis &, and

@+1 _ 2acosa i

== fal@®—cos2a) 4iasin2x = T 4sina’

hence
2¢ sin a
3 -1

!'°° (fj— DQ.‘ o L arc tan
¢ F-9%a%cos 2+l 2sina

(iii) A pole on the imaginary axis can be avoided by an
indent, and since the value of the integral along the evading semi-’
circle tends in the limit to half the value round a complete circum-
ference, the residue .contributes to the integral to be evaluated
exactly as if the pole was literally cut in half by the axis. If «'>0,
the logarithm has the value ¢ {m -2 arc tan (¢/a”)}, that is,
9 arc tan (a’/c), with the inverse tangent between 0 and 1 ; this
agrees with the general result in (ii) above, for if a' is zero, tan u
becomes 2ca’/(c* - a"”).

Remembering that the residue is to be halved, we derive from
the pair of poles i’ a term —2A’ are tan («"/c) for the ultimate
integral. The elementary formula

*  dw 1 a
s =~ arc tan —
¢ AU « c

is included here.

Collecting the results, we have, if the poles of f(2%) are all simple
and if the semicircular integral of /(z%) log {{ct+2)/(c-2)} tends to

Zero,

o 1 Py o
;,L flad)da=3 {A' arc tanh ZL"; aia }

-, To—= - A" arc tan 5
¢+ lal? s, Vel lal®

. ¢ . a’
+3 A arg tanh% - 3. A aro tan%,

’

where the sum S extends to the poles of (") which are strictly
inside the first quadrant of the plane, the sum E’ to the poles on
the real axis between 0 and ¢, apd the sum Ei to the poles on the
positive half of the imaginary axis; the inverse tangents are all
between 0 and . g

3. If a pole a is not simple, there is no change in principle,
but the residue required is no longer merely a multiple of the
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residue of f(z?). Near z=« we have
ctu 1 ]
- 24 L (2=
Iog { -0 + @) a)+
1 1 } (z-a)? f_1 1 ) (z-ap
L S IR it i L
{(c-n)' (c-a)* | 2 l(c-a)P +(c+a)"J 3t i
and if the principal part of f{z?) in this neighbourhood is
_Ar Ara ey A A
(Z--a)’+(>:-a)"‘Jr * (z—(1)2+(z—a)‘
' the residue of f(z?) log {(c+2)/(c-2)} is
(¢ +u) (a+e)=(a-c) (atc)P~(a-c)
1 3 "% CREPIY]
Moozt am TA T ey
. (ate)yt~(a=cy*
+ + Ay —*—“_-‘(7‘ ~1)ie- PR
Combination of residues from conjugate poles presents no fresh

problems, for the additional terms are all rational functions.

We must not overlook the one new possibility, of a pole at the

origin. The principal part must be of the form

B el

where the numerators are all real; near z=0,

Ay,

22,
c t3a®t

For an example with multiple poles, take f(2%)=1/Z%
Zo=2t=922%cos 2a+1. Writing a=cisa, z=-a=1{, we have

Z =X\t +u*+0(8),

A= s {1- e} ro,

where
X =40 - 4a cos 2a=4ia sin 2, p=6a*-2 cos 2a;

the residue of f(z%) log {(c +2).(c - 2)} is

cta 2Asc¢
1o —— + —=—
Mlog o+ ZT

where
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where

2u _ 3a*-cos 2 A=—£=-— 1 .
N T 6iddsin®2x’ 7

A= -

A2 16a2 sin? 2a
Using the indentities

cos 3a=cos « (2c08 2 -1), sin 3a=sin « (2 cos 2+ 1),
we have

A= - {cos 2(3 +cos 2 - 2 cos’ 22)

16 sin® 22
-7 sin (3 - cos 2a - 2cos® 2x) }

_ 3+2cos 2 _ . 3-2cos2x

64 cos® a ! 64 sin® a
_ l44cos’a . 1+4sin*a -
~ 64cos’a 64 sin®a '
and since
2Ayec _ ca
s F-a L 4(c* - e

we have finally

[“ dx 1+4 cos® « — ¢ cos a
32cos’a A+ 1

Yo (@' -22%cos 2« +1)7

1+4sin®a are tan 2esina _ cc® cos 2a - cos 4x)
32 sin® & © -1 4(c* - 2¢® cos2a +1)sin? 2z

4. If the lower limit ¢ of the integral does not occur para-
metrically in f(#%), the function obtained, regarded as a function of
¢, is simply the negative of an indefinite integral. The particular
results we have given can all be obtained otherwise: see for instance
Bromwich's Elemenlary Integrals (1911), p. 15, Ex. 34, where the elegant
parallel use of inverse hyperbolic and circular tangents is introduced.
It is true also that the evaluation of the principal part of any funec-
tion near a pole is fundamentally the same operation as the determi-
nation of a group of partial fractions. Ultimately our work is
equivalent to the familiar elementary processes, but it is none the
less true that without burdening the memory we do avoid a vast
amount of algebraic detail.

5. Professor Hardy prefers, he tells me, to approach these
evaluations differerently. Since

I:O Az)da= j: Aa+e)da,

~
the generality in the lower Ilimit is somewhat spurious, and
theoretically there is only the one problem, of evaluation from 0 toco,
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to solve. For this purpose we multiply the complex integrand f(z)
by a logarithm and slit the plane along the positive half of the real
axis; there is no restriction on f(z) to be even. In the slit plane, no
branch of log z assumes conjugate values for conjugate values of z,
but log (-2) can be taken to be real for negative real values of z,
and then has its imaginary part negative or positive according as
the imaginary part of z is positive or negative; we therefore use
the integrand f(z) log (-2). The contour integral consists in the
first place of the sum of

-7 LR fz)de:

and an integral round the whols circumference of |#| =R, and there-
fore if the latter integral tends to zero, then
the value of

jw
5 fla)da
s the negative of 4he sum of the residues of the function f(z) log (- 2)

at all the poles of f(z).

For example, for arbitrary complex values of p and g, provided
that ¢#0 and that (2+p)*~¢* has no real zero that is not strictly
negative,

@ dx 1
jo @I e - 25 {log (p+q)flog (-0 }

where each logarithm has its imaginary part between == and m.
Here woe are not using partial fractions, but determining the residue
of log(=2)/{(z+p)*-¢*} when z+p= g as the value of

log( - 2)/{2(z +p)}.

If f(2) is real for real values of z, the required integral is real
and the imaginary parts of residues are irrelevant. At a negative
real pole of f(z), the residue of f(2) log (—-2z) is real; if f(2) has a
complex pole a, then f(z) has the conjugate point @ also for a pole,
and the sum of the residues of f(z) log (-2) at « and a is twice the
real part of the residue at one of these two points.

Thus if p and ¢ are real with p>¢>0, then
-(°° da p+q

1
—— I ==
o (z+pP-g* 2rz ®p-q " a

Near z= - (p-q),
1 1 1 z+p-q

= = = - =-0)?
(cFprar T BqrGrp-al Tif T ap P0G

q
arg tanh = -
8 P
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z+p—-q s oo on .
log (-2)=log {(p-aq)-(z+p-a)}=log (p—q)-77_‘(r +0 (z+p-a)s
hence the residue of log ( -2)/{(z+pP-¢*}* at —p+q is

1 RO S
i '8 0"D" p-g
and therefore
!‘“ dx 1 1 1

Loog (p-a) + o~ palog(pra)t

1
o w+pP-¢pt 4 p-q) 44 4g'(p+0)

1 q

= 271—(;,—_67) = Q——qaarg tanhl—)-

We can deduce this last formula from the preceding formula by
differentiation with respect to g, but since the range of integration
is infinite the deduction is not quite trivial.

If p and g are both real and positive, the residue of
log( - 2)/{(z +p)*+ 2} at —p+iq is the value there of log(-2)/{2(z+ )},
and therefore the real part of this residue is (1/29) Tm{log(p -9} ;
hence

oo .
j ——i,t——, = 1~arc‘oan—q—-
¢ (x+pP+g g p
Since the residue of log (= 2)/{(z +p)*+¢*}* at this same point is
1 ;
g p=iQ)+ T
o log (p-1q) e P
we have

R - S S B TR ISPV S
!0 Her e 2Im i log (p u])J 2RI frepprn)

.1 a___p
= W arc tan » W)’
again a result obtainable by differentiation.

6. On one aspect of this work I am in complete agreement
with Professor Hardy. The initial restriction to even functions and
a semicircular contour is a mistake, for the process is not in any
sense an extension of the simple process of evaluating the integral
of fla) from -0 to +00 by integrating the function f(2) itself round
a contour. But I am reluctant to follow Professor Hardy in re-
moving the parameter ¢ from the limit of integration to the integ-
rand, for this transformation obscures, if it does not conceal, the
essential character of the result, the expression of an indefinite
integral by the help of a complete contour. In the examples in 85,
we need only substitute c+p for p in the evaluated result to obtain
the value of the integral from ¢ to <o, but this looks too much like
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an accidental advantage of the form in which the integrands have
been taken; a quadratic factor a®+2x cos «+1 would not lend itself
at all naturally to the same use.

Let us then slit the real axis as before from ¢ to + @, but let us
take for contour the complete circumference of |z| =R together with
the real axis described from R to ¢ and back again; let the integ-
rand now be f(z) log (¢ - z), when f(2) is not restricted to be even and
log (c—2) has real values for real values of z between - oo and c.
The contribution of the real axis to the contour integral is

R
-2 jg Az) daz,

and therefore if the contribution of the circumference tends to ‘zero,
the value of

f’ fa) dx

is the megalive of the sum of the residues of f(z) log (¢ -2) at dll the
poles of f(2).

If f(2) is real for real values of z, the residue of f(z) log (c- z)
at a real pole is real, and complex poles occur in conjugate pairs
with conjugate residues. Hence for example

=-3RI

r’ __dx _log (c-cis )
¢ a%-2x cos a+1 " 2 (cis a-cos a)

1 .
alalal Im log (¢ -cis a)

sin a
s arc tan ——— -
. sin z c-cos a

If f(z) is real for imaginary values as well as for real values of
2, then f(2) is an even function, and the residue of f(2) log (c-z) at
-a is the negative of the residue of f(z) log (c+z) at a. Thus the
sum of the negatives of the residues of f(z) log (c-2) at ¢ and -«
is the residue of the one function
Az) {log (c+2)-log (c-2)}
at the one pole ¢, and we are brought back to §1.

7. Obsession with even functions suggests a queer development.
Any function f(z) can be written as £ (2%)+2z¢, (2?), where

2 (D) =H)+ (- 2), 4 (BB)=f(2) - (- 2),
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and making the obvious change in the independent variable in one
integral we have

0 o - 0
[0 ) ax= [ A @) aex [0 (@) de.
Repeating the dissection we have, for any value of n.

]:3 Ax)de= 5: fi @) da+ j: fH@)dat - +

20 0
L”_l fo(@®) dat SL an () d:cf

where cr=c¥. To put the matter differently, we can express the
arbitrary function f(z) in the form

- AN = ig 4, A
P TS e T R "),
where N=2, and the integral of each term except the last is in
effect the integral of an even function.

Whether any important applications can be made of these
expansions remains to be seen, but an example shows that they are
not altogether barren. Let

1 a1 2x cos a
R S A
A, =) -2z cos at+1l a*-2a% cos 2a+1 * 27227 cos 2+ 1
Then

* ¢ (¢, a) ©
L fla, a) da= 3 sin = +¢o8 « L_} fla, 2%) da,
where
b(c, a)=arc tan 2—0228—1_111—“, 0<d (¢, 2) <73
that is,

0 0 !
sin @ L Az, 2) de=2"1 ey, a)+271 sin 2x jn fla, 22) dux,
if ¢, denotes as before ¢”. Repeating, we have
® :
sin = L flz, @) du=2"" dlc 2)+27 Bley, 200+ -+ +27 blenyy 2771 &)
w
427" sin 2" « JC fa, 27 «) da.
The integral in the last term is bounded, and therefore the
function on the left is given by the infinite series 327" d(cr-1, 277F a).

We have in fact seen in §6 that
sin a

o0
sin « s flz, «)=arc tan ———-
c c-cos a
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- Thus we have come on an expansion

sin 2 1 2 sin a1 2¢* sin 2«
arc tan - - = s arc tan —j3 + gz arc tan ——g——
c~cos « 2 -1 28 ct-1
1 2c* sin 4a
+$arctanT1— o
eagy to verify from the elementary identities
sin a sin « 2¢ sin «
arc tan == S Ere B 2 —— =gry fEn —— ,
¢=Ccos a ct+cos a -1
sin & sin 2 sin 2a
arc tan — ~arc tan — =ar¢ tan m—————,
c-cos a ctcos a ¢*—cos 2

but by no means obvious until we have been put on a track leading
to it. g

CONGRUENCE PROPERTIES OF o

BY
HANSRAJ GUPTA, Goul. Colleye, Hoshiurpur.

§1. Let ay, da, User, ar; k=% (J); be the set of positive integers
less than and prime to j. Then, if wi>1 be the least prime such
that wi=w (mod. j), the set of integers wy, ws, ws,..., wx shall be
spoken of as the ‘prime residue set” modulo j.

I m=HpB, where p's are different primes and B's integers > 0,
then the number M obtained by replacing each p on the right side
by its least prime residue modulo j, shall be called the replica of
n modulo j.

In what follows, w's shall denote special primes, p's any primes,
and ¢'s quadratfrei integers. All other letters shall denote positive
integers unless otherwise stated.

The following simple Lemmas regarding o(n)~the sum of the
divisors of n-are easily proved.

LEMMA 1. o(p) | o( %), if and only if B is odd.
LEMMA 2. If ¢, | g, then o(q) | o(q). ==
LEMMA 3. If M be the replica of m mod @@“?_%
then m =M (mod. j), /0
and o(m)=0(M) (mod. j). \g’)
g L A
. Oy =

L2
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§2. Ramanathan® has recently proved that for every n >0,
o(jn-1)=0 (mod. j) o (D)

when j=3, 4, 6, 8, 12 or 24. He further states tha;( these uppear to
be the only moduli for which (1) holds.

The object of this note is to prove the

THEOREM: o(,jn-1)=0 (mod. j), j > 3,
for every, n > 0, if and only if
a®=1 (mod. j)
for every « (less than and) prime to /.. .o (2)
It can be easily shown that 3, 4, 6, 8, 12 and 24 are the only
values of j >3 for which (2) holds. Our theorem would therefore
remove the doubt expressed in Ramanathan’s statement.
§3. Proof of the Theorem.
Let j be any one of the integers: 3, 4, 6, 8, 12 and 24, and
let m=,jn-1. Then, if M be the replica of m modulo j;
we have o(m)=0o(M) (mod. j).
Let M = g%, then from Lemma 1, it follows that
o(q) | o(M).
Hence il o(m) if j | o(q).
Since M=m=-1 (mod. ,/')v
while 7*=1 (mod. j), we must have
, ¢=-1 (mod. j) .o (3)
The number of ¢’s, satisfying (3), which can be formed with the
members : wy, Wy, y,..., wi of the complete prime residue set modulo
J» is limited, and it can be easily verified that for every such g,
J 1 alg).
Hence j | 6(m), i.e., 6(jn=1)=0 (mod. j); j=3, 4, 6, 8, 12, 24.
[Thus when j=24, the “ prime residue set ” modulo J, is
1, 5, 7, 11, 13, 17, 19, 23.
Since o(5)=6, o(7)=8, o(11)=12, o(13)=14, o(17)=18, o(19)=20
and 0(23)=24,

Therefore 24 | 6(q), except when ¢=1, 5, 7, 11, 13, 17, 19, 65, 85,
91, 133, 221 or 247; and none of these is congruent to-1 (mod. 24).

* Mathematics Student, 11 (1943), 33-35.¢
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Hence o(24n-1)=0 (mod. 24) for every n > 0.]
Conversely, let J be any positive integer, such that
o( jn=1)=0 (mod. j) for every » >0,
then  a*=1 (mod. j), for every « less than and prime to j.

If @y, a5, ay..., ar, k=%(j), be the set of positive integers less
than and prime to j, arranged in ascending order of magnitude, and
for some 7 < k,

a® % 1 (mod. j).
then, without loss of generality, we may suppose that ¢ << A/2.
Let @i =1 (mod. j), v#1;
then @ av=-1 (mod. j), n=k-v+1.
Let pi and p« be any primes such that
pi=ai (mod. j), and pr=a« (mod. ).
Then pi pv= -1 (mod. j), while
ol pi pu) =1+ p)(1+ pu),
=ai+ar (mod. j),
=qi-a» (mod. j),
#0 (mod. j);
for if u < ;L, then 0 < art+an < j;
and if u > 2, then 0 < |ai= | <‘é'
The theorem is thus completely proved.
§4. The Lemmas of §1 hold good even when o is replaced

by o5, where 0, (n) denotes the sum of the h-th powers of the
divisors of n.

We proceed to obtain conditions for the existence of a congru-
ence relation of the type
o (jn+1=0 (mod. j) ()
true for every m >0, a given j > 1, and an ! > 1 prime to j.

If 1, wy, wa, g, . - . -, Wiy k=3(j); be the complete prime
residue set modulo j, and
[=wi (mod. j),
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then in order that we may have
o ())=0 (mod. ),
we must have
]]’EIUII,'E -1 (mod. A (1)
Again let 1=, wg (mod. ) (8)

. h /
then since oy (1, w,g)=(1+1rr;)(l+w§),

=(1+ wZ + wg +") (mod. j),

h h .
Ewl+zu; (mod. J);

=

we must have also
h_ h 7
W= =g (mod. ).

Therefore w:hE - (1, wgl=1 {mod. j).

Giving different values to =« in (B), we get the second necessary
condition wiz.,

For every w, wh=1 (mod. j). (2)

¥ j=p* J; (J, p)=1:and XA >1; panodd prime; then conditions

(1) and (2) require % to be an odd multiple of b pr). (3)
If j=2* J, where J is odd and A >1; then
since It= -1 (mod. j),
= -1 (mod. 24);
while w?=1 (mod. 2%), for every w;

we must have & odd;
7= -1 (mod. 2%) but =1 (mod. j): and A <3, (4)

To show that these conditions are sufficient,
we write m for jn+l.

If M be the replica of m modulo j, and

M=¢q
then q¥*1. (5)
Let =1y Wg Wy . . . Wy (C)
Then ¢'=r"= -1 (mod. /).

Since for every w,

w?=1 (mod. j);
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therefore
w'=1 or-1 (mod. p),

where u is j or } j according as j is odd or even.

Therefore, of the w's on the right of (C), at least one, say w,, must
satisfy the relation:
w'=~1 (mod. p).
Thus j |0, (g) and therefore also o;, (m), when j is odd.
When j is even, then

Uh(!])=(1+w£)(l+ wg) - (1+1u::)

=0 (mod. j),
provided there are at least two w's on the right of (C),
when g=w, =1 (mod. j),

o () =1+w! =1+=0 (mod. j).
The conditions obtained are thus seen to be sufficient.

§5. It may be remarked that in view of conditions (3) and (4),
congruences of the type (A) can and do exist only when

J=4 8, pr J, 2T, 4 or 8T ;

where p is an odd prime; A >1; and J >3 is odd with no
prime factor of the form 4/+1.

Conditions (1) and (2) were recently stated by Ramanathan in a
letter to the writer.

Pythagorean Cosmology

At the centre of their cosmos they placed Hestia, the Central Fire, to
shed light and warmth on the Sun and the planets. A sceptic who disbelieved
in the gods could hardly accept the theological explanation of the invisibi-
lity of the Central Fire. To satisfy him, the Pythagoreans invented one of
their most ingenious theories. The inhabited regions of the earth, they
pointed out, were all on that side of the earth which is always turned away
from the centre of its orbit. So to view the Central Fire it would be neces-
sary to go beyond India. As not even Pythagoras himself had travelled so
far, it was uanlikely that any one else would. But suppose someone did.
Hestia would still be invisible to him, because betwcen it and the earth,
Antichthon would cut off the view. Could not the traveller wait till the
Counter-Earth rolled by? He could not; earth and Counter-Earth kept even
pace ¢ogether as they revolved about the Central Fire. Not even the 19th
century inventors of the space-filling ether imagined a more satisfying ex-
planation of the impossibility of observing the unobservable.

E. T. BELL in Sc¢ripta Mathematica, March 1945.
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BY
K. G. RAMANATHAN, University of Madras.

1. If 02 (n) is the sum of the a-th powers of the divisors of
the integer n so that o(n)=0; (n) the sum of the divisors of n, then
(1-1) o(kn-1)=0 (mod. k)*
for every n>0 and k=3, 4, 6, 8, 12 or 4.

Recently I have been - able to obtain more general results
concerning 0. (n). The important theorems are:

THEOREM 1. If &> 2, (k, )=1 then a necessary condition that
0 (km+1)=0 (mod. %) for every m > 0 is
= -1 (mod. k)

THEOREM 2. If &> 2, (k I)=1 and F=-1 (mod. k) then a
necessary and sufficient condition that oa (km+1)=0
(mod. k) for every & >0 is that \¥=1 (mod. &)
for every A prime to A.

If ¢=1 we deduce in particular that the congruences for o(n)
can be only those in (1-1). Mr. Hansraj Gupta in the previous
paper does not state the theorem 1 for a=1 which, I think, is
necessary.

It will be shown elsewhere that the values of ‘«' depend upon
- and that & itself cannot be arbitrary.

Examples. (i) k=65 Then
O (65m+0)=0 (mod. 65) for 1=2, 7, 8, 18, 28, 32, 33, 37, 47, 57, 58
and 63, ¢ being any odd number,

(i) k=72 05 (72m+1)=0 (mod. 72) for 1=35, 47, 7L

*The Mathemalics Student. 1943 (P. 33-35).
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A Solution of the General Quartic

The following solution of the quartic would, I believe, interest

the readers. The equation of the resolvent cubic is obtained directly
here.

The general quartic is of the form :

'+ 2ax® + bat + Qe +d = 0,
or  at+2aa’ = - (bat+ 2 + d). e (1)
Now, for all values of y, we have

(2% +ax +y) = 2"+ 202’ + (B + 2y)2 + 2ayx + 2. . @)
Hence, f;aking use of (1), we get

(2% + ax +yP=(a*+ 2~ b)a + 2ay - o) + (42 - d). e (3)
The right side of (3) will be a perfect square if

(ay = cf=(*~ )2y +a® - b). e (d)

This is the resolvent cubic for the quartic,

Any root y of (4) will make hoth sides of (3) perfect squares
and the solution follows readily.

Consider for example the guartic
2 =102+ 44.0° - 1040+ 96 =0..

The resolvent cubic is
(= 5y + 520 =(y* - 96)(2y - 19),
or 3P -22y%+ 164y - 440 =0,
One root of this is easily seen to be 10.
The equation now takes the form (a?< 5z +10)%=(z +2)".
Hence 1=2, 4, 2+2iv2.

The case when a¢=0 was considered by Hacke in The American
Math. Monthly, 48, 1941, 32‘7—-8.

Govt. College} HANSRAJ GuUPTA.

Hoshiarpur
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~

On a simplified form of the Euler-Maclaurin Sum formula

S. S. Pillai has proved by a simple method the following results
in vol. VII, p. 70 f. ’

log (n!)=n log n—=n+3 log n+ C+0,3(n-1) (o] <1)
noq v

b3 7=log n+y+0in (0<<1)
1

It is worth while remembering that these results are included in a
theorem which arises out of a consideration of the Euler-Maclaurin
summation formula but which can be as simply proved as our two
results. The theorem is given in Pélva and Szegd, Aufgaben und
Lehrsitze aus der Analysts, II Abschn., Nr. 18:

THEOREM. If F (&) is differentiable for a>=1 and f' (&) is
negative. continuous, steadily increusing, and if

n

1

S=1f1)+/R)+ - A=+ %f(n)-—! Ax) dx,

1hen . )
(i)  Hm sw exists=s (say).
n—>x
(i) 0 <s—sn<<-%f'00)
Taking successively /(@)= ~log x, 1.r, we have:

COROLLARY L.
log n! =(n+1) log n—n+l=s+e (0 <Tes<18n),

1

<,,
'n.—v]I 21“ 1 (7;1: § % —logn)-
‘>2_11 T '

© COROLLARY 2. If, in the theorem, lim f(x) is  finite, ihen
Y>%

kel o
S(s=-sn) ts convergent, since 3 —=f (n) is so.

COROLLARY 3. If, in Corollary 2, we write lim fla)=f(co),
and if s
ta= A +fQ@)+ - ) = 7 ) de,
*
Ihen tn steadily decreases to the [imit ¢ (say), and 3(tn=1) converges or

diverges wilh §[f(n) —f(OO)]-
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The last result is proved by observing that
sn=tn = 3f(1) - 1f(n),
and consequently -
s—sn=t—tnt+1 [fln)-floo)].

Corollary 3 appears in the Question Paper, Pure Mathematics III,
Madras B.A. (Hons.), 1936, in the incorrect form : §(£n—t) converges
or diverges with °§f(n). That this is wrong is shown by the case
An) = in which f(20)=1 and 3f(n) diverges, but 3[(n)-f(co)]

o0
converges and consequently also 3 (/n—1).

T. K. RAGHAVACHARI

Remarks on Cauchy's Convergence Principle

These remarks are offered with a view to helping the student
new to analysis to realize the precise connection between two notes
of 8. 8. Pillai in this journal. The first of the notes is on the
definition of oscillation (vol. IX, pp. 165-7) and the second on
the sufficiency part of Cauchy's general theorem on convergence
(vol. X, p. 91 £.). The proofs given are in a form applicable to any
(real) function of a real variable and not only to a function of a
positive integral variable. To secure continuity of thought, the
argument used in the second of the two notes referred to above, is
briefly restated in this form.

CAUCHY'S PRINCIPLE. If corresponding 1o auy £>0, there exvists
a 3(e)>0 such that

(€©) Ihlaa) ~la)] <e for 0<|2r=a| < |y~ a] <Ble),
then lim é(x) exists,
e &3
PROOF—Any real number £ must be either " superior* or °‘infe-
rior ' or ‘intermediate '—superior when ¢(2)<é for every r#a in
some neighbourhood of «; inferior when #(2)>% for every w#¢ in
some neighbourhood. of « ; intermediate when &(x))<i<d(zs) for an
21%5¢ and an 2,7« in every neighbourhood of . It can be shown
that, in virtue of (C), there is at least one superior number, at least
one inferior number, and at most one intermediate number (say, k).
Hence there is a section of the real numbers formed with the upper
5
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class consisting of superior numbers, the lower class consisting of
either inferior numbers and the number 4, or only inferior numbers,
according as k, does or does not exist. In either case it is easy to
prove that lim ¢ (x) exists and corresponds to the section. In the first
case the limit is & and approached both from above and from below ;
in the second case the limit is approached from one side only.

The proof outlined above establishes at one stroke Cauchy’s
principle and the complement to the principle which Pillai has given
in the form of a positive definition of oscillation. The equivalence
of this new definition and the usual negative definition can be stated
in the form of a

COROLLARY TO CAUCHY'S PRINCIPLE. A nccessary and sufficient
condition for &(x) to oscillate (according to
the wsual definition) as x tends to a 1is that,
there should be constants ky, ks, satisfying

(D) D) by <k <p(3)
for an x17#a and an x,7%a in every mneighbour-
hood of «.

Proof—In the first place, given (D) there are two intermediate
numbers &y, ky. If d(x)> -0 or +00 as x—a, real numbers will be
cither all superior or all inferior, If &(x)=a as a—>a, real numbers,
with the exception of, at the most, one intermediate number, will be
both superior and inferior. Thus (D), with either the divergence of
&(x) or the convergence of @(z), leads to a contradiction. Hence (D)
ensures that ¢(x) shall oscillate as 2—a.

Next, if #(x) oscillates, real numbers cannot be either all superior
or all inferior, since this means &(x)=>+co0 as x=¥a; nor can they be
both superior and inferior with, at the most, one exception which is
intermediate, for this means ¢(x)x as z—a. Hence among the real
numbers there must be at least two—%;, %y (say)—which are inter-
mediate. That is, (D) is necessary for the oscillation of $(x)

It will be seen that (D) is equivalent to the condition iim ¢ (x)
> lim ¢ () as 2—a, just as (C) is equivalent to the condition that
#(x) is bounded and I[m ¢(r)=Um ¢(z). In examples, however, (D)
may be more convenient to use than its equivalent in terms of
upper and lower limits. The following is a case in point.

DEDUCTION FROM (D). If &(x) s monotonic in « neighbourhood
of x=a, which is wholly on one side of a, then d(x) cannot osczllate
as x approaches a from the side in question.
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Proof—To fix ideas, suppose @(x) is monotonic in the open
interval [a, a+h] where 1>>0. If #(z) oscillates as x—>a+0, we can
find in [¢, a+hl, first 2y, a5, then 2", 2", satisfying the conditions:

max (21", 2y") < min (2, zy),
B(ay) <hy < kg < B(zy'), )
Ba") <ky < by < d(ay"). .

Then &(z) < ¢(25") and d(ay") < (ay). Either the first inequality
or the second contradicts our hypothesis that #(x) is monotonic in
la, a+1], the first when &(z) is increasing and the second when b(x)
is decreasing. Hence ¢(xv) cannot oscillate for the contemplated
mode of approach of z to a.

Christian College, }

Tambaram. C. T. RAJAGOPAL.

On Stirling’s Approximation for I(:)

The object of this note is to give a proof of Stirling's approxi-
mation for ['(x). Several methods of deriving this important formula
are available, but the procedure adopted here appears novel. The
proof is based on the method of characteristic functions.

Consider a stochastic variable z following the probability law
p(2)=[a"T (@), "% e where >0 and 2> 0.
The characteristic function of the distribution of z is

@ (1"1)=j:pm plz) de=[1-1t/z]"".

Log ¢ (it)=1t - */2x+ (it)*/32* . . . x being large.
Hence .

b (i) =" e G - ]
By Fourier Transform,

1 ¢ il
p(z)= o j_w e Blir) dr

n

1 je-—z’la+it-t"/2x

o [1+@G1)*/322+ - - - 1 dt

]

OL-” [[1+(-D)3/3ﬁ+ R R h s /Y
where D denotes the operator d/dz.

[1-D%32%+ - - - ] N(2)

]
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where
N(z)= 2}; {a—it E-D-tiax g,
= (:1‘;‘277)1’/2. o vz
The process of differentiation after integration is clearly justified
by fhe exponential form of the integrand in N(z).

Hence

re ¥ ) (=1
w275 ¢ =L+ DB+ -] ez e

=[1+F]. N(z2)

where F is a function in positive integral powers of (z-1). It will
be observed that for all values of 271, the right side of the above
equation tends to zero for large x. The only exceptional value is
z=1 and in this case,

1

- e " 2 T(x) o (vj2m)? for x=>co
Thus
2 ) .
[la) (2v)1,2. LT
Trava i i
rav"”;fg;i(g?;;ers”y (MISS) ALEYAMMA GEORGE.

Some Asymptotic Values

1. The object of this note is to prove that the integrals
ceo £\
3 1 e
(i) JO e (1+ n) dt
- " , ( _ é)"
and (ii) joe 1 ; dt

have the same asymptotic value 4/(n7/2). These results are of the
same depth as Stirling’s asymptotic formula for the I'-function, the
latter being deducible from them.

It is readily seen that the integrand in (i) is monotone decrea-
sing from 1 to 0 as ¢ increases from 0 to . Hence we may
change the variahle by the substitution

"
ot (1+ "—) = 1-a
n
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As t increases from 0 to ©, 2 increases from 0 to 1.

We find (1~ 2)dr= (% + l)dn‘, and taking logarithms and expanding

log (L+4/n) by Taylor's theorem with a remainder after two terms
| 1 [z i ] ni?
08 7= =l=n|~ = =
1-r noo 2 (L+0tm)* ) 2 (n+0)2
where 0 << 6 < 1. This gives

whence

:)\/E log (1%1‘)_% (Zr+J; (1-0) dr
=/\/—2-+u) 0<w<l)

COROLLARY. Let n be a positive integer. Then the value of
the integral is easily seen to be

(i) 1+1+ (1- %) + (1_ %)(1_ {2,)
F oo +<1— %)(1- %) . .(1_ L'T';j )

Tt follows that the expression (iii) lies hetween A/(nm/2) and
AV (nm(2)+ 1.

2. The integral (ii) is treated in the same manner as the
integral (i). In fact if we change the variable by the substitution
dl-tnf=1-x
we get, as before,

(1-2) dt= (% -1) da,

P ) ecocn

n —
whence | ¢ (L-tur di= AT -

where 0 < o < 1.
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3. We shall now deduce Stirling’s asymptotic formula for the
I-function from the above results,

By changing variables suitably we readily get

© n R

~t an = +
]0 € a” d jo Ju
© "
- . - i ¢( _ L)ﬂ on 5' ~t ( + 1) dr
=nte" jlo el n di+a" e o ¢ 1 pn

e () o ) )
= a" e (V@nm)tw-w'}
= " e A/(2nm) {1+ n/v (2nm)}

where n=w=-w’ lies between -1 and +1.

i

T'n+1)

n «©
Finally it may be remarked that each of the integrals ‘.Oand f"

0
is, in a sense, half of the integral .‘o e " da.

Christian College,} P. KESAVA MENON.
Tamberam. '

GLEANING

Then there is the mysterious number 5040 which Plato gives in his Laws
as the population of his Ideal City. Any one will recognise 5040 as the total
number of different ways of arranging 7 things in a row, say, 7 books on a
shelf. The number is 7! Written thus its numerological possibilities are
embarrassingly evident. Even the super-sacred ;7 occurs, to say nothing of
the female 2, the male 3 the just 4 the 5 regular bodies and the perfect 6.
Among its other claims to civic attention, 7 is the number of Plato’s hills that
must be surmounted to attain knowledge and wisdom. In fact 7 “is” actually
these hills, But there is infinitely more concealed in this encyclopaedic
number. Any Cosmic numerologist will observe that 5040 has exactly 60
divisers, while 60 has exactly 12, and 12 has exactly the perfect 6, and 6 has
exactly the Just 4, while 4 has exactly 3, and 3 has exactly the female 2, which
has exactly 2 and so on, 2—2—2—...... for ever. From these facts it can be
shown that the Ideal City is contained in the Nuptial Number and that it
recurs eternally once it is firmly (“fourly ") established. The implications
of the Zodiacal 12 are too obvious to need mention. The 3 epitomizes the
Ideal Family of the City all through the Great Year.

E. T. BELL in Scripta Mathematica, March 1045.



ANNOUNCEMENTS AND NEWS

The Fourteenth Conference of the Society will be held in Delhi on
December 21—24, at the invitation of the Delhi University. Papers intended
for the Conference should be sent to Dr. A. Narasinga Rao, Annamalainagar
P. O. along with two brief abstracts. Members of the Society are entitled to
read papers or take part in discussions. Others may do so on registering
themselves as members of the Conference on payment of Rs. 5 which should be
remitted by money order to Dr. A. Narasinga Rao, Treasurer of the Society.
Dr. Ram Behari, Head of the Mathematics Department, Delhi University has
been appointed Local Secretary and should be addressed on all matters relating
to accommodation, program etc.

The following persons have been admitted as members of the Society :—

George Abraham Esq., Lecturer in mathematics, Christian College,
Tambaram.

Daljit Singh Esq., Statistical Section, Imperial Agricultural Research
Institute, New Delhi.

T. K, Manickavasagam Pillai Esq., M.A.,, Lecturer, Annamalai University,

Annamalainagar.

M. N. Ramakrishna Pillai Esq, B.A., BL. Accountant, A. G’s Office,
Trivandrum.

D. W. Kerkar Esq., Professor, S. P. College, Poona. .

J. K. Bhattacharya, M. sc., D. L. P,, Tripura State, Bengal.

Prof. D. D. Kosambi has been admitted as a Life Member of the Society
on payment of the usual composition fee of Rs. 150.

The Society acknowledges with gratitude a gift of Rs. 450 from the
Rockfeller Foundation, distributed through the National Institute of Sciences,
Calcutta.

The University of Travancore and the Government of Travancore have
been pleased to give a grant of Rs. 500 each as a donation to the Publication
Fund of the Society.

A Committee consisting of Prof. F. W. Levi (Chairman), Dr. A. Narasinga
Rao, Dr. Ram Behari and Dr. A. N. Singh, Prof. N. R. Sen and M. R. Siddiqi
has been appointed to consider the question of a uniform syllabus in Mathe-
matics at the various Universities, and to frame such a syllabus.

We offer our congratulations to Dr. Ram Behari, St. Stephen’s College,
Delhi, on whom the University of Dublin has conferred the degree of Doctor of

Science (Sc. D.) in recognition of his work on the Differential Geometry of
Ruled Surfaces.

The Statistical Section of the Imperial Council of Agricultural Research
has instituted a 2 years course in Statistics as applied to Agriculture and
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Animal Husbandry. The first year’s course is elementary and is intended for
those desiring to qualify themselves for appointment as statistical assistants in
the Departments of Agriculture and Animal Husbandry while the second
year’s course is more advanced and qualifies for higher posts. The course
begins on 26th July and extends up to the end of April each year. Full
information may be had from the Statistical Adviser, Imperial Council of
Agricultural Research, New Delhi.

Henri Leon Lebesgue, the great French Mathematician (born in 1875), died
in 1941. The first statement of his brilliant idea of dividing the range of varia-
tion of f () instead of the range of x is contained in a note * Sur une genera-
lisation de I’ integrale definie ” published in Comptes Rendus in 1901, while his
great Thése with the full account of his work appeared in Annali di Matematica
of 1902. His great book Lecons sur lintegration was published in 1904. A
detailed obituary appears in the Jour. Lond. Math. Soc., Jan. 1944.

Sir Arthur Eddington, Plumian Professor of Astronomy at the Cambridge
University and well known through bis lucid and popular exposition of Rela-
tivity died in 1944. A detailed obituary will appear in The Mathematical
Gazette.

We regret to announce the death at Madras in the third week of July 1945
of N. Durairajan, M.A, B.E., Superintending Engineer, Public Works Depart-
ment, Madras, an active member of the Society and a keen mathematician. In
spite of heavy official work in important executive posts, Mr. Durairajan con-
tinued his mathematical investigations and wrote nearly 20 papers for the’
Journal and the Student dealing with such topics as the Biparabola, Nets
of cubic curves, Complex Geometry, Desmic Tetrahedra, etc. The late
V. Ramaswami Ayyar, Founder of the Indian Mathematical Society has
named a point connected with a quadrangle, its “Durairajan point” .
(vide J. I. M. S. Question I71I).

4 This is the point styled the “ Bennet Point” by H. F. Baker in his Principles of
Geometry, Vol. IV.

GLEANINGS

It is said that the Egyptians, and Lacedaemonians seldom elected any
new kings but such as had some knowledge in the mathematics; imagining
those who had not, to be men of imperfect judgements, and unfit to rule
and govern. ’

Though Plato’s censure that those who did not understand the II7th
proposition of the I3th book of Euclid’s Elements ought not to be ranked
among rational creatures, was unreasonable and unjust, yet to give a man
character of universal learning, who is destitute of a competent knowledge in the
Mathematics, is no less so. From FRANKLIN: Usefulness of Mathematics 1735.
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. one different States,  The Association holds two national meetings per year and’
~ the sections hold one or two meetings per year. All meetings, both national

. who have not specialized in mathematics beyond the Calculus.

5 excited wide interest among those engaged in teaching mathematics.
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THE HLTHWWAL LBSD@IA’HON OF AMERIC

ematical Association of America is  devoted primarily/to the m(eresfs
»of colleglate mathematics, It now has over two thousand individual and institu-
tional members, There are twenty-two sections at present, Tepresentiog | thlrty«

and sectional, are reported in the official Journal: .

__ Applieation blanks for membershlp may be obtamed from the Socretdry, Prof o
“W. D. Calms, Oberlin, Ohio.

THE AHERIGAN' HATHEHATH}XI} HONTHL‘I :
Official Organ of - %
THE MATHEMATICAL KASSOCIATION OF AMERIGA
Is the Only Journal of. Collevmte Gmde in the Mathematical Field in this Counlry. %
Most of its mathematical contributions can be read and understood by those

The historical-papers, which are numerous and of high grade, are based upon
original research.
The QUESTIONS and DISCUSSIONS, which are timely and interesting,
cover a wide variety of topics.
Surveys of the contents of recent books constitute a valuable guide to current
mathematical literature,
The topics in the department of Undergraduate. Mathematics Clubs have

The NEWS and NOTICES cover a wide range of interest and information.
The Problems and Solutious hold the attention and activity of a large number
of persons who are lovers of Mathematics for its own sake. 2

URRENT SCIENCE

A MONTHLY JOURNAL OF SCIENCE
(Devo!ed to the survey of the developments in the field of
pure and applied sciences)

Published by the Editorial Co-operation of Prominent Scienlists in Indid.

CONTENTS

Editorial Articles: Science in relation to public affairs. Special
articles and reviews on recent advances in science.

Letters to the Editor : for facilitating prompt announcement of
results of scientific investigations and discussion of seientific
policies.

Reviews and Review Articles: Prepared by specialists.

Biographies of Scientists. :

Astronomical Notes. =

Science Notes.

- Amdemzes and- Sactettes, etc., etc.
- Supplements and Special numbers published from time to time.

An excellent medium for advertising Laboratory Apparatus and
. Chemicals, Scientific and Technical Books, Industrial Plant ~
and Machinery, ete., etc.

Annual Subscription: Rs. 6-or 12 sh.
Single copy: As. 12 or I sh‘ 6

For particulars please apply to \—

The Hon. Secretary,
: ) CURRENT SCIENCE,
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